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or resources comparable, at least in terms of costs, costs that may 
occur at various moments in time (e.g., in various years) are repre-
sented as a single number anchored at one particular year, the reference 
year (2005). Textbooks on investment appraisal provide background on 
the concepts of constant values, discounting, net present value calcula-
tions, and levelized costs, for example (Jelen and Black, 1983).

A.II.3.1  Constant (real) values

The analyses of costs are in constant or real1 dollars (i.e., excluding the 
impacts of infl ation) based in a particular year, the base year 2005, 
in USD. Specifi c studies on which the report depends may use market 
exchange rates as a default option or use purchasing power parities, 
but where these are part of the analysis, they will be stated clearly and, 
where possible, converted to USD2005.

When the monetary series in the analyses are in real dollars, consistency 
requires that the discount rate should also be real (free of infl ationary com-
ponents). This consistency is often not obeyed; studies refer to ‘observed 
market interest rates’ or ‘observed discount rates’, which include infl ation 
or expectations about infl ation. ‘Real/constant’ interest rates are never 
directly observed, but derived from the ex-post identity:

 (1+ m) = (1+ i ) × (1+ f )   (1)
where
 m = nominal rate (%)
 i = real or constant rate (%)
 f = infl ation rate (%)

The reference year for discounting and the base year for anchoring 
constant prices may differ in studies used in the various chapters; 
where possible, an attempt was made to harmonize the data to refl ect 
discount rates applied here.

A.II.3.2  Discounting and net present value

Private agents assign less value to things further in the future than to 
things in the present because of a ‘time preference for consumption’ 
or to refl ect a ‘return on investment’. Discounting reduces future cash 
fl ows by a value less than 1. Applying this rule on a series of net cash 
fl ows in real USD, the net present value (NPV) of the project can be 
ascertained and, thus, compared to other projects using:

     (2)

where
 n = lifetime of the project
 i = discount rate

1  The economists’ term ‘real’ may be confusing because what they call real does not 
correspond to observed fi nancial fl ows (‘nominal’, includes infl ation); ‘real’ refl ects 
the actual purchasing power of the fl ows in constant dollars.

NPV =
j

n

=

∑
0

 ( )Net cas h flows j

( )i+1  j

A.II.1  Introduction

Parties need to agree upon common data, standards, supporting theo-
ries and methodologies. This annex summarizes a set of agreed upon 
conventions and methodologies. These include the establishment of 
metrics, determination of a base year, defi nitions of methodologies and 
consistency of protocols that permit a legitimate comparison between 
alternative types of energy in the context of climate change phenom-
ena. This section defi nes or describes these fundamental defi nitions and 
concepts as used throughout this report, recognizing that the literature 
often uses inconsistent defi nitions and assumptions. 

This report communicates uncertainty where relevant, for example, by 
showing the results of sensitivity analyses and by quantitatively present-
ing ranges in cost numbers as well as ranges in the scenario results. This 
report does not apply formal IPCC uncertainty terminology because at 
the time of approval of this report, IPCC uncertainty guidance was in the 
process of being revised.

A.II.2  Metrics for analysis in this report

A number of metrics can simply be stated or are relatively easy to defi ne. 
Annex II provides the set of agreed upon metrics. Those which require 
further description are found below. The units used and basic param-
eters pertinent to the analysis of each RE type in this report include:

• International System of Units (SI) for standards and units 
• Metric tonnes (t) CO2, CO2eq 
• Primary energy values in exajoules (EJ)
• IEA energy conversion factors between physical and energy units
• Capacity: GW thermal (GWt ), GW electricity (GWe )
• Capacity factor
• Technical and economic lifetime
• Transparent energy accounting (e.g., transformations of nuclear or 

hydro energy to electricity)
• Investment cost in USD/kW (peak capacity)
• Energy cost in USD2005 /kWh or USD2005 /EJ
• Currency values in USD2005 (at market exchange rate where 

applicable, no purchasing power parity is used)
• Discount rates applied = 3, 7 and 10% 
• World Energy Outlook (WEO) 2008 fossil fuel price assumptions
• Baseline year = 2005 for all components (population, capacity, pro-

duction, costs). Note that more recent data may also be included 
(e.g., 2009 energy consumption)

• Target years: 2020, 2030 and 2050.

A.II.3  Financial assessment of technologies 
over project lifetime

The metrics defi ned here provides the basis from which one renewable 
resource type (or project) can be compared to another. To make projects 
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(CRF) but may be known as the Annuity Factor ‘δ’. Like NPV, the annuity 
factor δ depends on the two parameters i and n:

The CRF (or δ) can be used to quickly calculate levelized costs for very 
simple projects where investment costs during one given year are the 
only expenditures and where production remains constant over the life-
time (n):
      (5)

or where one can assume that operation and maintenance (O&M) costs 
do not change from year to year:

      (6)

where
 CLev = levelized cost
 B = investment cost
 Q = production 
 O&M = annual operating and maintenance costs
 n = life time of the project
 i = discount rate

A.II.4  Primary energy accounting 

This section introduces the primary energy accounting method used 
throughout this report. Different energy analyses use different account-
ing methods that lead to different quantitative outcomes for reporting 
both current primary energy use and energy use in scenarios that 
explore future energy transitions. Multiple defi nitions, methodologies 
and metrics are applied. Energy accounting systems are utilized in the 
literature often without a clear statement as to which system is being 
used as noted by Lightfoot, 2007 and Martinot et al., 2007. An overview 
of differences in primary energy accounting from different statistics has 
been described (Macknick, 2009) and the implications of applying differ-
ent accounting systems in long-term scenario analysis were illustrated by 
Nakicenovic et al., (1998).

Three alternative methods are predominantly used to report primary 
energy. While the accounting of combustible sources, including all fossil 
energy forms and biomass, is unambiguous and identical across the dif-
ferent methods, they feature different conventions on how to calculate 
primary energy supplied by non-combustible energy sources, i.e., nuclear 
energy and all renewable energy sources except biomass. 

These methods are:

• The physical energy content method adopted, for example, by 
the Organisation for Economic Cooperation and Development 
(OECD), the International Energy Agency (IEA) and Eurostat (IEA/
OECD/Eurostat, 2005),

i× ( )+ n1 i
δ=

( )+ n1 i –1

C orB× /)δB(δ× =:,=Q C QLev ×Lev

+B
C

QLev =
×δ O&M

This report’s analysts have used three values of discount rates ( i = 3, 7 
and 10%) for the cost evaluations. The discount rates may refl ect typical 
rates used, with the higher ones including a risk premium. The discount 
rate is open to much discussion and no clear parameter or guideline 
can be suggested as an appropriate risk premium. This discussion is not 
addressed here; the goal is to provide an appropriate means of compari-
son between projects, renewable energy types and new versus current 
components of the energy system.

A.II.3.3  Levelized cost

Levelized costs are used in the appraisal of power generation invest-
ments, where the outputs are quantifi able (MWh generated during the 
lifetime of the investment). The levelized cost is the unique break-even 
cost price where discounted revenues (price x quantities)2 are equal to 
the discounted net expenses:

     (3)

where
 CLev = levelized cost
 n = lifetime of the project
 i = discount rate

A.II.3.4  Annuity factor or capital cost recovery factor

A very common practice is the conversion of a given sum of money at 
moment 0 into a number n of constant annual amounts over the coming 
n future years:

Let A = annual constant amount in payments over n years
Let B = cash amount to pay for the project in year 0

A is obtained from B using a slightly modifi ed equation 2: the lender 
wants to receive B back at the discount rate i. The NPV of the n times A 
receipts in the future therefore must exactly equal B:

      (4)

We can bring A before the summation because it is a constant (not 
dependent on j).

The sum of the discount factors (a fi nite geometrical series) is deductible 
as a particular number. When this number is calculated, A is found by 
dividing B by this number. This is known as the Capital Recovery Factor 

2  This is also referred to as Levelized Price. Note that, in this case, MWh would be 
discounted.

Expensesj
n

Quantitiesj

j

n
CLev=

=

∑

∑

( )i j+1

( )i j+1

j = 0

0

=j 1 =j 1

r∑ ∑:,B o
A

B
n

( )i1+ j

n 1
= = A

( )i1+ j
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• The substitution method, which is used in slightly different variants by 
BP (2009) and the US Energy Information Administration (EIA online 
glossary), each of which publish international energy statistics, and

• The direct equivalent method that is used by UN Statistics (2010) and 
in multiple IPCC reports that deal with long-term energy and emission 
scenarios (Nakicenovic and Swart, 2000; Morita et al., 2001; Fisher et 
al., 2007).

For non-combustible energy sources, the physical energy content method 
adopts the principle that the primary energy form should be the fi rst 
energy form used downstream in the production process for which mul-
tiple energy uses are practical (IEA/OECD/Eurostat, 2005). This leads to 
the choice of the following primary energy forms:

• Heat for nuclear, geothermal and solar thermal energy; and
• Electricity for hydro, wind, tide/wave/ocean and solar photovoltaic 

(PV) energy.

Using this method, the primary energy equivalent of hydropower and 
solar PV, for example, assumes a 100% conversion effi ciency to ‘primary 
electricity’, so that the gross energy input for the source is 3.6 MJ of 
primary energy = 1 kWh electricity. Nuclear energy is calculated from the 
gross generation by assuming a 33% thermal conversion effi ciency,3 that 
is, 1 kWh = (3.6 ÷ 0.33) = 10.9 MJ. For geothermal energy, if no country-
specifi c information is available, the primary energy equivalent is 
calculated using 10% conversion effi ciency for geothermal electricity 
(so 1 kWh = (3.6 ÷ 0.1) = 36 MJ), and 50% for geothermal heat.

The substitution method reports primary energy from non-combustible 
sources as if they had been substituted for combustible energy. Note, 
however, that different variants of the substitution method use some-
what different conversion factors. For example, BP applies a 38% 
conversion effi ciency to electricity generated from nuclear and hydro-
power, whereas the World Energy Council used 38.6% for nuclear and 
non-combustible renewable sources (WEC, 1993) and the EIA uses 
still different values. Macknick (2009) provides a more complete over-
view. For useful heat generated from non-combustible energy sources, 
other conversion effi ciencies are used.

The direct equivalent method counts one unit  of secondary energy pro-
vided from non-combustible sources as one unit of primary energy, that 
is, 1 kWh of electricity or heat is accounted for as 1 kWh = 3.6 MJ of 
primary energy. This method is mostly used in the long-term scenarios 
literature, including multiple IPCC reports (IPCC, 1995; Nakicenovic and 
Swart, 2000; Morita et al., 2001; Fisher et al., 2007), because it deals 
with fundamental transitions of energy systems that rely to a large 
extent on low-carbon, non-combustible energy sources.

3  As the amount of heat produced in nuclear reactors is not always known, the IEA 
estimates the primary energy equivalent from the electricity generation by assuming 
an effi ciency of 33%, which is the average for nuclear power plants in Europe (IEA, 
2010b).

In this report, IEA data are utilized, but energy supply is reported using 
the direct equivalent method. The major difference between this and the 
physical energy content method will appear in the amount of primary 
energy reported for electricity production by geothermal heat, concen-
trating solar thermal, ocean temperature gradients or nuclear energy. 
Table A.II.1 compares the amounts of global primary energy by source 
and percentages using the physical energy content, the direct equivalent 
and a variant of the substitution method for the year 2008 based on IEA 
data (IEA, 2010a). In current statistical energy data, the main differences 
in absolute terms appear when comparing nuclear and hydropower. 
Since they both produced a comparable amount of electricity globally 
in 2008, under both direct equivalent and substitution methods, their 
share of meeting total fi nal consumption is similar, whereas under the 
physical energy content method, nuclear is reported at about three 
times the primary energy of hydropower.

The alternative methods outlined above emphasize different aspects of pri-
mary energy supply. Therefore, depending on the application, one method 
may be more appropriate than another. However, none of them is superior 
to the others in all facets. In addition, it is important to realize that total 
primary energy supply does not fully describe an energy system, but is 
merely one indicator amongst many. Energy balances as published by 
the IEA (2010a) offer a much wider set of indicators, which allows 
tracing the fl ow of energy from the resource to fi nal energy use. For 
instance, complementing total primary energy consumption with other 
indicators, such as total fi nal energy consumption and secondary energy 
production (e.g., electricity, heat), using different sources helps link the 
conversion processes with the fi nal use of energy. See Figure 1.16 and 
the associated discussion for a summary of this approach.

For the purpose of this report, the direct equivalent method is chosen for 
the following reasons.

• It emphasizes the secondary energy perspective for non-combustible 
sources, which is the main focus of the analyses in the technology 
chapters (Chapters 2 through 7).

• All non-combustible sources are treated in an identical way by 
using the amount of secondary energy they provide. This allows 
the comparison of all non-CO2-emitting renewable and nuclear 
energy sources on a common basis. Primary energy of fossil fuels 
and biomass combines both the secondary energy and the ther-
mal energy losses from the conversion process. When fossil fuels 
or biofuels are replaced by nuclear systems or other renewable 
technologies than biomass, the total of reported primary energy 
decreases substantially (Jacobson, 2009).

• Energy and CO2 emissions scenario literature that deals with fun-
damental transitions of the energy system to avoid dangerous 
anthropogenic interference with the climate system over the long 
term (50 to 100 years) has used the direct equivalent method most 
frequently (Nakicenovic and Swart, 2000; Fisher et al., 2007). 
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Table A.II.2 shows the differences in the primary energy accounting 
for the three methods for a scenario that would produce a 550 ppm 
CO2eq stabilization by 2100.

While the differences between applying the three accounting meth-
ods to current energy consumption are modest, differences grow 
signifi cantly when g enerating long-term lower CO2 emissions energy 
scenarios where non-combustion technologies take on a larger relative 
role (Table A.II.2). The accounting gap between the different methods 
becomes bigger over time (Figure A.II.1). There are signifi cant differ-
ences in individual non-combustible sources in 2050 and even the 
share of total renewable primary energy supply varies between 24 and 
37% across the three methods (Table A.II.2). The biggest absolute gap 

(and relative difference) for a single source is for geothermal energy, 
with about 200 EJ difference between the direct equivalent and the 
physical energy content method, and the gap between hydro and 
nuclear primary energy remains considerable. The scenario presented 
here is fairly representative and by no means extreme. The chosen 550 
ppm stabilization target is not particularly stringent nor is the share of 
non-combustible energy very high. 

A.II.5  Lifecycle assessment and risk analysis

This section describes methods and underlying literature and assump-
tions of analyses o f energy payback times and energy ratios (A.II.5.1), 

Table A.II.2 | Comparison of global total primary energy supply in 2050 using different primary energy accounting methods based on a 550 ppm CO2eq stabilization scenario 
(Loulou et al., 2009).

Physical content method Direct equivalent method Substitution method

EJ % EJ % EJ %

Fossil fuels 581.6 55.2 581.56 72.47 581.6 61.7

Nuclear 81.1 7.7 26.76 3.34 70.4 7.8

Renewable: 390.1 37.1 194.15 24.19 290.4 30.8

Bioenergy   120.0 11.4 120.0 15.0 120.0 12.7

Solar 23.5 2.2 22.0 2.8 35.3 3.8

Geothermal 217.3 20.6 22.9 2.9 58.1 6.2

Hydro 23.8 2.3 23.8 3.0 62.6 6.6

Ocean 0.0 0.0 0.0 0.0 0.0 0.0

Wind 5.5 0.5 5.5 0.7 14.3 1.5

Total 1,052.8 100 802.5 100 942.4 100

Table A.II.1 | Comparison of global total primary energy supply in 2008 using different primary energy accounting methods (data from IEA, 2010a).

Physical content method Direct equivalent method Substitution method1

EJ % EJ % EJ %

Fossil fuels 418.15 81.41 418.15 85.06 418.15 79.14

Nuclear 29.82 5.81 9.85 2.00 25.90 4.90

Renewable: 65.61 12.78 63.58 12.93 84.27 15.95

Bioenergy2 50.33 9.80 50.33 10.24 50.33 9.53

Solar 0.51 0.10 0.50 0.10 0.66 0.12

Geothermal 2.44 0.48 0.41 0.08 0.82 0.16

Hydro 11.55 2.25 11.55 2.35 30.40 5.75

Ocean 0.00 0.00 0.00 0.00 0.01 0.00

Wind 0.79 0.15 0.79 0.16 2.07 0.39

Other 0.03 0.01 0.03 0.01 0.03 0.01

Total 513.61 100.00 491.61 100.00 528.35 100.00

 Notes: 

1  For the substitution method, conversion effi ciencies of 38% for electricity and 85% for heat from non-combustible sources were used. BP uses the conversion value of 38% for 
electricity generated from hydro and nuclear sources. BP does not report solar, wind and geothermal in its statistics; here, 38% for electricity and 85% for heat is used. 

2  Note that IEA reports fi rst-generation biofuels in secondary energy terms (the primary biomass used to produce the biofuel would be higher due to conversion losses, see Sections 
2.3 and 2.4).
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readily understand the percentage or multiple connecting embodied 
energy and energy output. Moreover, it has been argued (see Voorspools 
et al., (2000, p. 326)) that in the absence of alternative technologies, elec-
tricity would have to be generated by conventional means. We therefore 
use kWhe/kWhprim in this report. 

Applying the lifecycle energy metric to an energy supply system allows 
defi ning an energy payback time. This is the time tPB that it takes the 
system to supply an amount of energy that is equal to its own energy 
requirement E. Once again, this energy is best measured in terms of the 
primary energy equivalent  E

R
PB

conv

  of the system’s electricity output EPB 

over the payback time. Voorspools et al. (2000, p. 326) note that were 
the system to pay back its embodied primary energy in equal amounts 
of electricity, energy payback times would be more than three times as 
long.

Mathematically, the above condition reads

     , and leads to  

(which, for example, coincides with the standard German VDI 4600 defi -
nition). Here,    is the system’s annual net energy output 

expressed in primary energy equivalents. It can be shown that the Energy 
Ratio ER (or EROEI) and the energy payback time tPB can be converted 
into each other according to 
 
         .

Note that the energy payback time is not dependent on the lifetime T, 
because 
              .

Energy payback times have been partly converted from energy ratios 
found in the literature (Lenzen, 1999, 2008; Lenzen and Munksgaard, 
2002; Lenzen et al., 2006; Gagnon, 2008; Kubiszewski et al., 2010) based 
on the assumed average lifetimes given in Table 9.8 (Chapter 9). Note 
that energy payback as defi ned in the glossary (Annex I) and used in 
some technology chapters refers to what is defi ned here as energy pay-
back time.

A.II.5.2  Review of lifecycle assessments of electricity 
generation technologies

The National Renewable Energy Laboratory (NREL) carried out a 
comprehensive review of published lifecycle assessments (LCAs) of 
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Figure A.II.1 | Comparison of global total primary energy supply between 2010 and 
2100 using different primary energy accounting methods based on a 550 ppm CO2eq 
stabilization scenario (Loulou et al., 2009).
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lifecycle GHG emissions (A.II.5.2), operational water use (A.II.5.3) and 
hazards and risks (A.II.5.4) of energy technologies as presented in 
Chapter 9. Results of the analysis carried out for lifecycle GHG emis-
sions are also included in Sections 2.5, 3.6, 4.5, 5.6, 6.5 and 7.6. Please 
note that the literature bases for the reviews in A.II.5.2 and A.II.5.3 are 
included as lists within the respective sections.

A.II.5.1  Energy payback time and energy ratio

The Energy Ratio, ER (also referred to as the energy payback ratio, or the 
Energy Return on Energy Investment, EROEI; see Gagnon, 2008), of an 
energy supply system of power rating P and load factor λ, is defi ned as 
the ratio 

y ×P ×E

E E
ER

hlife=
×8760 −1 λ

=
T

 

of the lifetime electricity output Elife of the plant over its lifetime T, and 
the total (gross) energy requirement E for construction, operation and 
decommissioning (Gagnon, 2008). In calculating E, it is a convention to 
a) exclude the energy from human labour, energy in the ground (fossil 
and minerals), energy in the sun, and hydrostatic potential, and b) not 
to discount future against present energy requirements (Perry et al., 1977; 
Herendeen, 1988). Further, in computing the total energy requirement E, 
all its constituents must be of the same energy quality (for example only 
electricity, or only thermal energy, see the ‘valuation problem’ discussed 
in Leach (1975), Huettner (1976), Herendeen (1988), and especially 
Rotty et al. (1975, pp. 5-9 for the case of nuclear energy)). Whilst E may 
include derived and primary energy forms (for example electricity and 
thermal energy), it is usually expressed in terms of primary energy, with 
the electricity component converted to primary energy equivalents using 
the thermal effi ciency  Rconv

≈ 0.3  of a typical subcritical black-coal-fi red 
power station as the conversion factor. This report follows these conven-
tions. E is sometimes reported in units of kWhe/MJprim, and sometimes in 
units of kWhe/kWhprim. Whilst the fi rst option chooses the most common 
units for either energy form, the second option allows the reader to 
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electricity generation technologies. Of 2,165 references collected, 296 
passed screens, described below, for quality and relevance and were 
entered into a database. This database forms the basis for the assessment 
of lifecycle greenhouse gas (GHG) emissions from electricity generation 
technologies in this report. Based on estimates compiled in the database, 
plots of published estimates of lifecycle GHG emissions appear in each 
technology chapter of this report (Chapters 2 through 7) and in Chapters 
1 and 9, where lifecycle GHG emissions from RE technologies are com-
pared to those from fossil and nuclear electricity generation technologies. 
The following subchapters describe the methods applied in this review 
(A.II.5.2.1), and list all references that are shown in the fi nal results, 
sorted by technology (A.II.5.2.2).

A.II.5.2.1  Review methodology

Broadly, the review followed guidelines for systematic reviews as com-
monly performed, for instance, in the medical sciences (Neely et al., 
2010). The methods of reviews in the medical sciences differ somewhat 
from those in the physical sciences, in that there is an emphasis on mul-
tiple, independent reviews of each candidate reference using predefi ned 
screening criteria; the formation of a review team composed of, in this 
case, LCA experts, technology experts and literature search experts that 
meets regularly to ensure consistent application of the screening crite-
ria; and an exhaustive search of published literature to ensure no bias 
by, for instance, publication type (journal, report, etc.). 

It is critical to note at the outset that this review did not alter (except 
for unit conversion) or audit for accuracy the estimates of lifecycle GHG 
emissions published in studies that pass the screening criteria. Addi-
tionally, no attempt was made to identify or screen for outliers, or pass 
judgment on the validity of input parameter assumptions. Because 
estimates are plotted as published, considerable methodological incon-
sistency is inherent, which limits comparability of the estimates both 
within particular power generation technology categories and across 
the technology categories. This limitation is partially counteracted by 
the comprehensiveness of the literature search and the breadth and 
depth of literature revealed. Few attempts have been made to broadly 
review the LCA literature on electricity generation technologies. Those 
that do exist tend to focus on individual technologies and are more lim-
ited in comprehensiveness compared to the present review (e.g., Lenzen 
and Munksgaard, 2002; Fthenakis and Kim, 2007; Lenzen, 2008; Sova-
cool, 2008b; Beerten et al., 2009; Kubiszewski et al., 2010). 

The review procedure included the following steps: literature collection, 
screening and analysis. 

Literature collection
Starting in May of 2009, potentially relevant literature was identifi ed 
through multiple mechanisms, including searches in major bibliographic 
databases (e.g., Web of Science, WorldCat) using a variety of search algo-
rithms and combinations of key words, review of reference lists of relevant 

literature, and specialized searches on websites of known studies series 
(e.g., European Union’s ExternE and its descendants) and known LCA litera-
ture databases (e.g., the library contained within the SimaPro LCA software 
package). All collected literature was fi rst categorized by content (with key 
information from every collected reference recorded in a database) and 
added to a bibliographic database. 

The literature collection methods described here apply to all classes of elec-
tricity generation technologies reviewed in this report except for oil and 
hydropower. LCA data for hydropower and oil were added at a later stage 
to the NREL database and have therefore undergone a less comprehensive 
literature collection process. 

Literature screening 
Collected references were independently subjected to three rounds of 
screening by multiple experts to select references that met criteria for quality 
and relevance. References often reported multiple GHG emission estimates 
based on alternative scenarios. Where relevant, the screening criteria were 
applied at the level of the scenario estimate, occasionally resulting in only a 
subset of scenarios analyzed in a given reference passing the screens.

References having passed the fi rst quality screen included peer-reviewed 
journal articles, scientifi cally detailed conference proceedings, PhD theses, 
and reports (authored by government agencies, academic institutions, non-
governmental organizations, international institutions, or corporations) 
published after 1980 and in English. Attempts were made to obtain English 
versions of non-English publications and a few exceptions were translated. 
The fi rst screen also ensured that the accepted references were LCAs, 
defi ned as analyzing two or more lifecycle phases (with exceptions for PV 
and wind energy given that the literature demonstrates that the vast major-
ity of lifecycle GHG emissions occur in the manufacturing phase (Frankl et 
al., 2005; Jungbluth et al., 2005)). 

All references passing the fi rst screen were then directly judged based on 
more stringent quality and relevance criteria:

• Employed a currently accepted attributional LCA and GHG accounting 
method (consequential LCAs were not included because their results 
are fundamentally not comparable to results based on attributional LCA 
methods; see Section 9.3.4 for further description of attributional and 
consequential LCAs);

• Reported inputs, scenario/technology characteristics, important assump-
tions and results in enough detail to trace and trust the results; and

• Evaluated a technology of modern or future relevance.

For the published results to be analyzed, estimates had to pass a fi nal 
set of criteria:

• To ensure accuracy in transcription, only GHG emission estimates that 
were reported numerically (i.e., not only graphically) were included. 
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• Estimates duplicating prior published work were not included. 

• Results had to have been easily convertible to the functional unit 
chosen for this study: grams of CO2eq per kWh generated. 

Table A.II.3 reports the counts of references at each stage in the screen-
ing process for the broad classes of electricity generation technologies 
considered in this report.

Analysis of estimates
Estimates of lifecycle GHG emissions from studies passing both 
screens were then analyzed and plotted. First, estimates were cat-
egorized by technology within the broad classes considered in this 
report, listed in Table A.II.3. Second, estimates were converted to 
the common functional unit of g CO2eq per kWh generated. This 
conversion was performed using no exogenous assumptions; if 
any were required, that estimate was not included. Third, esti-
mates of total lifecycle GHG emissions that included contributions 
from either land use change (LUC) or heat production (in cases 
of cogeneration) were removed. This step required that studies 
that considered LUC- or heat-related GHG emissions had to report 
those contributions separately such that estimates included here 
pertain to the generation of electricity alone. Finally, distributional 
information required for display in box and whisker plots were 
calculated: minimum, 25th percentile value, 50th percentile value, 
75th percentile value and maximum. Technologies with data sets 
composed of less than fi ve estimates (e.g., geothermal) have been 
plotted as discrete points rather than superimposing synthetic dis-
tributional information. 

The resulting values underlying Figure 9.8 are shown in Table A.II.4. Fig-
ures displayed in technology chapters are based on the same data set, 
yet displayed with a higher level of resolution regarding technology sub-
categories (e.g., on- and offshore wind energy).

A.II.5.2.2  List of references
 
Below, all references for the review of lifecycle assessments of greenhouse 
gas emissions from electricity generation that are shown in the fi nal results 
in this report are listed, sorted by technology and in alphabetical order.

Biomass-based power generation (52)

Beals, D., and D. Hutchinson (1993). Environmental Impacts of Alternative Electric-

ity Generation Technologies: Final Report. Beals and Associates, Guelph, Ontario, 

Canada, 151 pp. 

Beeharry, R.P. (2001). Carbon balance of sugarcane bioenergy systems. Biomass & 

Bioenergy, 20(5), pp. 361-370.

Corti, A., and L. Lombardi (2004). Biomass integrated gasifi cation combined cycle 

with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA). 

Energy, 29(12-15), pp. 2109-2124.

Cottrell, A., J. Nunn, A. Urfer, and L. Wibberley (2003). Systems Assessment of Elec-

tricity Generation Using Biomass and Coal in CFBC. Cooperative Research Centre 

for Coal in Sustainable Development, Pullenvale, Qld., Australia, 21 pp. 

Cowie, A.L. (2004). Greenhouse Gas Balance of Bioenergy Systems Based on Integrated 

Plantation Forestry in North East New South Wales, Australia: International Energy 

Agency (IEA)Bioenergy Task 38 on GHG Balances of Biomass and Bioenergy Sys-

tems. IEA, Paris, France. 6 pp. Available at: www.ieabioenergy-task38.org/projects/

task38casestudies/aus-brochure.pdf. 

Table A.II.3 | Counts of LCAs of electricity generation technologies (‘references’) at each stage in the literature collection and screening process and numbers of scenarios 
(‘estimates’) of lifecycle GHG emissions evaluated herein.

Technology category References reviewed
References passing 

the fi rst screen
References passing 
the second screen

References providing 
lifecycle GHG 

emissions estimates

Estimates of lifecycle 
GHG emissions 
passing screens

Biopower 369 162 84 52 226

Coal 273 192 110 52 181

Concentrating solar power 125 45 19 13 42

Geothermal Energy 46 24 9 6  8

Hydropower 89 45 11 11 28

Natural gas 251 157 77 40 90

Nuclear Energy 249 196 64 32 125

Ocean energy 64 30 6 5 10

Oil 68 45 19 10 24

Photovoltaics 400 239 75 26 124

Wind Energy 231 174 72 49 126

TOTALS 2165 1309 546 296 984

% of total reviewed 60% 25% 14%

% of those passing fi rst screen 42% 23%

% of those passing second screen 54%

Note: Some double counting is inherent in the totals given that some references investigated more than one technology.
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Cuperus, M.A.T. (2003). Biomass Systems: Final Report. Environmental and Eco-

logical Life Cycle Inventories for Present and Future Power Systems in Europe 

(ECLIPSE): N.V. tot Keuring van Electrotechnische Materialen (KEMA) Nederland 

B.V., Arnhem, The Netherlands, 83 pp. 

Damen, K., and A.P.C. Faaij (2003). A Life Cycle Inventory of Existing Biomass 

Import Chains for “Green” Electricity Production. NW&S-E-2003-1, Universiteit 

Utrecht Copernicus Institute, Department of Science, Technology and Society, 

Utrecht, The Netherlands, 76 pp. 

Daugherty, E.C. (2001). Biomass Energy Systems Effi ciency: Analyzed Through a Life 

Cycle Assessment. M.S. Thesis, Lund University, Lund, Sweden, 39 pp.

Dones, R., C. Bauer, R. Bolliger, B. Burger, T. Heck, A. Roder, M.F. Emenegger, 

R. Frischknecht, N. Jungbluth, and M. Tuchschmid (2007). Life Cycle Inven-

tories of Energy Systems: Results for Current Systems in Switzerland and Other 

UCTE Countries. Ecoinvent Report No. 5, Paul Scherrer Institute, Swiss Centre for 

Life Cycle Inventories, Villigen, Switzerland, 185 pp. Available at: www.ecolo.org/

documents/documents_in_english/Life-cycle-analysis-PSI-05.pdf.
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Dowaki, K., S. Mori, H. Abe, P.F. Grierson, M.A. Adams, N. Sam, P. Nimiago, 

J. Gale, and Y. Kaya (2003). A life cycle analysis of biomass energy system 
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Gas Control Technologies – 6th International Conference, Kyoto, Japan, 1-4 

October 2002. Pergamon, Oxford, pp. 1383-1388.

Dubuisson, X., and I. Sintzoff (1998). Energy and CO2 balances in different power 

generation routes using wood fuel from short rotation coppice. Biomass & Bioen-

ergy, 15(4-5), pp. 379-390.

Elsayed, M.A., R. Matthews, and N.D. Mortimer (2003). Carbon and Energy Bal-

ances for a Range of Biofuel Options. Resources Research Institute, Sheffi eld Hallam 

University, Sheffi eld, UK, 341 pp. 
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Table A.II.4 | Aggregated results of literature review of LCAs of GHG emissions from electricity generation technologies as displayed in Figure 9.8 (g CO2eq/kWh).

Values
Bio-

power

Solar Geothermal 
Energy

Hydropower
Ocean 
Energy

Wind 
Energy

Nuclear 
Energy

Natural
 Gas

Oil Coal
PV CSP

Minimum -633 5 7 6 0 2 2 1 290 510 675

25th percentile 360 29 14 20 3 6 8 8 422 722 877

50th
percentile

18 46 22 45 4 8 12 16 469 840 1001

75th
percentile

37 80 32 57 7 9 20 45 548 907 1130

Maximum 75 217 89 79 43 23 81 220 930 1170 1689

CCS min -1368 65 98

CCS max -594 245 396

Note: CCS = Carbon capture and storage, PV = Photovoltaic, CSP = Concentrating solar power.
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and Kim, 2010). The present review therefore informs the discourse of this 
report in a unique way. 

Literature collection
The identifi cation of relevant literature started with a core library of refer-
ences held previously by the researchers, followed by searching in major 
bibliographic databases using a variety of search algorithms and combina-
tions of key words, and then reviewing reference lists of every collected 
reference. All collected literature was added to a bibliographic database. 
The literature collection methods described here apply to all classes of elec-
tricity generation technologies reviewed in this report.

Literature screening 
Collected references were independently subjected to screening to select 
references that met criteria for quality and relevance. Operational water use 
studies must have been written in English, addressed operational water use 
for facilities located in North America, provided suffi cient information to 
calculate a water use intensity factor (in cubic metres per megawatt-hour 
generated), made estimates of water consumption that did not duplicate 
others previously published, and have been in one of the following formats: 
journal article, conference proceedings, or report (authored by government 
agencies, nongovernmental organizations, international institutions, or cor-
porations). Estimates of national average water use intensity for particular 
technologies, estimates of existing plant operational water use, and esti-
mates derived from laboratory experiments were considered equally. Given 
the paucity of available estimates of water consumption for electricity gen-
eration technologies and that the estimates that have been published are 
being used in the policy context already, no additional screens based on 
quality or completeness of reporting were applied. 

Analysis of estimates
Estimates were categorized by fuel technology and cooling systems. Cer-
tain aggregations of fuel technology types and cooling system types were 
made to facilitate analysis. Concentrating solar power includes both para-
bolic trough and power tower systems. Nuclear includes pressurized water 
reactors and boiling water reactors. Coal includes subcritical and super-
critical technologies. For recirculating cooling technologies, no distinction is 
made between natural draft and mechanical draft cooling tower systems. 
Similarly, all pond-cooled systems are treated identically. Estimates were 
converted to the common functional unit of cubic meters per MWh gener-
ated. This conversion was performed using no exogenous assumptions; if 
any were required, that estimate was not analyzed. 
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A.II.5.4  Risk analysis

This section introduces the methods applied for the assessment of hazards 
and risks of energy technologies presented in Section 9.3.4.7, and provides 
references and central assumptions (Table A.II.5). 

A large variety of defi nitions of the term risk exists, depending on the 
fi eld of application and the object under study (Haimes, 2009). In engi-
neering and natural sciences, risk is frequently defi ned in a quantitative 
way: risk (R) = probability (p) × consequence (C). This defi nition does 
not include subjective factors of risk perception and aversion, which 
can also infl uence the decision-making process, that is, stakeholders 
may make trade-offs between quantitative and qualitative risk fac-
tors (Gregory and Lichtenstein, 1994; Stirling, 1999). Risk assessment 
and evaluation is further complicated when certain risks signifi cantly 
transcend everyday levels; their handling posing a challenge for society 
(WBGU, 2000). For example, Renn et al. (2001) assigned risks into three 
categories or areas, namely (1) the normal area manageable by rou-
tine operations and existing laws and regulations, (2) the intermediate 
area, and (3) the intolerable area (area of permission). Kristensen et al. 
(2006) proposed a modifi ed classifi cation scheme to further improve 
the characterization of risk. Recently, additional aspects such as critical 
infrastructure protection, complex interrelated systems and ‘unknown 
unknowns’ have become a major focus (Samson et al., 2009; Aven and 
Zio, 2011; Elahi, 2011). 

The evaluation of the ‘hazards and risks’ of various energy technologies 
as presented in Section 9.3.4.7 builds upon the approach of comparative 
risk assessment as it has been established at the Paul Scherrer Institut 
(PSI) since the 1990s;4 at the core of which is the Energy-Related Severe 
Accident Database (ENSAD) (Hirschberg et al., 1998, 2003a; Burgherr 
et al., 2004, 2008; Burgherr and Hirschberg, 2005). The consideration 
of full energy chains is essential because an accident can happen in 
any chain stage from exploration, extraction, processing and storage, 
long distance transport, regional and local distribution, power and/or 
heat generation, waste treatment, and disposal. However, not all these 
stages are applicable to every energy chain. For fossil energy chains 
(coal, oil, natural gas) and hydropower, extensive historical experi-
ence is contained in ENSAD for the period 1970 to 2008. In the case 
of nuclear power, Probabilistic Safety Assessment (PSA) is employed to 
address hypothetical accidents (Hirschberg et al., 2004a). In contrast, 
consideration of renewable energy technologies other than hydropower 
is based on available accident statistics, literature review and expert 
judgment because of limited or lacking historical experience. It should 
be noted that available analyses have limited scope and do not include 

4  In a recent study, Felder (2009) compared the ENSAD database with another energy 
accident compilation (Sovacool, 2008a). Despite numerous and partially substantial 
differences between the two data sets, several interesting fi ndings with regard to 
methodological and policy aspects were addressed. However, the study was based 
on the fi rst offi cial release of ENSAD (Hirschberg et al., 1998), and thus disregarded 
all subsequent updates and extensions. Another study by Colli et al. (2009) took a 
slightly different approach using a rather broad set of so-called Risk Characterization 
Indicators, however the actual testing with illustrative examples was based on 
ENSAD data.
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probabilistic modelling of hypothetical accidents. This may have bear-
ing particularly on results for solar PV.

No consensus defi nition of the term ‘severe accident’ exists in the lit-
erature. Within the framework of PSI’s database ENSAD, an accident is 
considered to be severe if it is characterized by one or several of the 
following consequences:

• At least 5 fatalities or
• At least 10 injured or
• At least 200 evacuees or
• An extensive ban on consumption of food or
• Releases of hydrocarbons exceeding 10,000 metric tons or
• Enforced clean-up of land and water over an area of at least 25 km2

or
• Economic loss of at least 5 million USD2000

For large centralized energy technologies, results are given for three 
major country aggregates, namely for OECD and non-OECD countries 
as well as EU 27. Such a distinction is meaningful because of the sub-
stantial differences in management, regulatory frameworks and general 
safety culture between highly developed countries (i.e., OECD and EU 
27) and the mostly less-developed non-OECD countries (Burgherr and 
Hirschberg, 2008). In the case of China, coal chain data were only ana-
lyzed for the years 1994 to 1999 when data on individual accidents from 
the China Coal Industry Yearbook (CCIY) were available, indicating that 
previous years were subject to substantial underreporting (Hirschberg 
et al., 2003a,b). For the period 2000 to 2009, only annual totals of coal 
chain fatalities from CCIY were available, which is why they were not 
combined with the data from the previous period. For renewable energy 
technologies except hydropower, estimates can be considered represen-
tative for developed countries (e.g., OECD and EU 27).

Comparisons of the various energy chains were based on data normal-
ized to the unit of electricity production. For fossil energy chains the 
thermal energy was converted to an equivalent electrical output using 
a generic effi ciency factor of 0.35. For nuclear, hydropower and new 
renewable technologies the normalization is straightforward since the 
generated product is electrical energy. The Gigawatt-electric-year 
(GWe yr) was chosen because large individual plants have capacities 
in the neighbourhood of 1 GW of electrical output (GWe ). This makes 
the GWe yr a natural unit to use when presenting normalized indica-
tors generated within technology assessments.

A.II.6  Regional defi nitions and country 
groupings

The IPCC SRREN uses the following regional defi nitions and country 
groupings, largely based on the defi nitions of the World Energy Outlook 
2009 (IEA, 2009). Grouping names and defi nitions vary in the published 
literature, and in the SRREN in some instances there may be slight 

deviations from the standard below. Alternative grouping names that 
are used in the SRREN are given in parenthesis.

Africa

Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, 
Cape Verde, Central African Republic, Chad, Comoros, Congo, Democratic 
Republic of Congo, Côte d’Ivoire, Djibouti, Egypt, Equatorial Guinea, 
Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, 
Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, 
Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Reunion, 
Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, 
Somalia, South Africa, Sudan, Swaziland, United Republic of Tanzania, 
Togo, Tunisia, Uganda, Zambia and Zimbabwe.

Annex I Parties to the United Nations Framework Convention on 
Climate Change

Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, 
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,  
Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein, Lithuania,  
Luxembourg, Monaco, Netherlands, New Zealand, Norway, Poland,  
Portugal, Romania, Russian Federation, Slovak Republic, Slovenia, Spain, 
Sweden,  Switzerland, Turkey, Ukraine, United Kingdom and United 
States.

Eastern Europe/Eurasia (also sometimes referred to as 
‘Transition Economies’)

Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, 
Bulgaria, Croatia, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia,  
Lithuania, the former Yugoslav Republic of Macedonia, the Republic  
of Moldova, Romania, Russian Federation, Serbia, Slovenia, Tajikistan, 
Turkmenistan, Ukraine, and Uzbekistan. For statistical reasons,
this region also includes Cyprus, Gibraltar and Malta.

European Union

Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark,  Estonia, 
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia,  
Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, 
Slovak  Republic, Slovenia, Spain, Sweden and United Kingdom.

G8

Canada, France, Germany, Italy, Japan, Russian Federation, United 
Kingdom and United States.

Latin America

Antigua and Barbuda, Aruba, Argentina, Bahamas, Barbados, Belize, 
Bermuda, Bolivia, Brazil, the British Virgin Islands, the Cayman Islands, 
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Table A.II.5 | Overview of data sources and assumptions for the calculation of fatality rates and maximum consequences.

Coal

• ENSAD database at PSI; severe (≥5 fatalities) accidents.1 

• OECD: 1970-2008; 86 accidents; 2,239 fatalities. EU 27: 1970-2008; 45 accidents; 989 fatalities. Non-OECD without China: 1970-2008; 163 accidents; 5.808 fatalities 
(Burgherr et al., 2011).
Previous studies: Hirschberg et al. (1998); Burgherr et al. (2004, 2008).

• China (1994-1999): 818 accidents; 11,302 fatalities (Hirschberg et al., 2003a; Burgherr and Hirschberg, 2007).
• China (2000-2009): for comparison, the fatality rate in the period 2000 to 2009 was calculated based on data reported by the State Administration of Work Safety 

(SATW) of China.2 Annual values given by SATW correspond to total fatalities (i.e., severe and minor accidents). Thus for the fatality rate calculation it was assumed 
that fatalities from severe accidents comprise 30% of total fatalities, as has been found in the China Energy Technology Program (Hirschberg et al., 2003a; Burgherr 
and Hirschberg, 2007). Chinese fatality rate (2000-2009) = 3.14 fatalities/GWeyr.

Oil

• ENSAD database at PSI; severe (≥5 fatalities) accidents.1 
• OECD: 1970-2008; 179 accidents; 3,383 fatalities. EU 27: 1970-2008; 64 accidents; 1,236 fatalities. Non-OECD: 1970-2008; 351 accidents; 19,376 fatalities (Burgherr 

et al., 2011).
Previous studies: Hirschberg et al. (1998); Burgherr et al. (2004, 2008).

Natural Gas

• ENSAD database at PSI; severe (≥5 fatalities) accidents.1  
• OECD: 1970-2008; 109 accidents; 1,257 fatalities. EU 27: 1970-2008; 37 accidents; 366 fatalities. Non-OECD: 1970-2008; 77 accidents; 1,549 fatalities (Burgherr et al., 2011).

Previous studies: Hirschberg et al. (1998); Burgherr et al. (2004, 2008); Burgherr and Hirschberg (2005).

Nuclear

• Generation II (Gen. II) - Pressurized Water Reactor, Switzerland; simplifi ed Probabilistic Safety Assessment (PSA) (Roth et al., 2009). 
• Generation III (Gen. III) - European Pressurized Reactor (EPR) 2030, Switzerland; simplifi ed PSA (Roth et al., 2009).

Available results for the above described EPR point towards signifi cantly lower fatality rates (early fatalities (EF): 3.83E-07 fatalities/GWeyr; latent fatalities (LF): 
1.03E-05 fatalities/GWeyr; total fatalities (TF): 1.07E-05 fatalities/GWeyr) due to a range of advanced features, especially with respect to Severe Accident Management 
(SAM) active and passive systems. However, maximum consequences of hypothetical accidents may increase (ca. 48,800 fatalities) due to the larger plant size 
(1,600 MW) and the larger associated radioactive inventory.

• In the case of a severe accident in the nuclear chain, immediate or early (acute) fatalities are of minor importance and denote those fatalities that occur in a short time 
period after exposure, whereas latent (chronic) fatalities due to cancer dominate total fatalities (Hirschberg et al., 1998). Therefore, the above estimates for Gen. II and 
III include immediate and latent fatalities.

• Three Mile Island 2, TMI-2: The TMI-2 accident occurred as a result of equipment failures combined with human errors. Due to the small amount of radioactivity 
released, the estimated collective effective dose to the public was about 40 person-sievert (Sv). The individual doses to members of the public were extremely low: 
<1 mSv in the worst case. On the basis of the collective dose one extra cancer fatality was estimated. However, 144,000 people were evacuated from the area around 
the plant. For more information, see Hirschberg et al. (1998).

• Chernobyl: 31 immediate fatalities; PSA-based estimate of 9,000 to 33,000 latent fatalities (Hirschberg et al., 1998).
• PSI’s Chernobyl estimates for latent fatalities range from about 9,000 for Ukraine, Russia and Belarus to about 33,000 for the entire northern hemisphere in the next 

70 years (Hirschberg et al., 1998). According to a recent study by numerous United Nations organizations, up to 4,000 persons could die due to radiation exposure in 
the most contaminated areas (Chernobyl Forum, 2005). This estimate is substantially lower than the upper limit of the PSI interval, which, however, was not restricted 
to the most contaminated areas.

Hydro

• ENSAD Database at PSI; severe (≥5 fatalities) accidents.1  
• OECD: 1970-2008; 1 accident; 14 fatalities (Teton dam failure, USA, 1976). EU 27: 1970-2008; 1 accident; 116 fatalities (Belci dam failure, Romania, 1991) (Burgherr et 

al., 2011).
• Based on a theoretical model, maximum consequences for the total failure of a large Swiss dam range between 7,125 and 11,050 fatalities without pre-warning, but 

can be reduced to 2 to 27 fatalities with 2 hours pre-warning time (Burgherr and Hirschberg, 2005, and references therein).
• Non-OECD: 1970-2008; 12 accidents; 30,007 fatalities. Non-OECD without Banqiao/Shimantan 1970-2008; 11 accidents; 4,007 fatalities; largest accident in China 

(Banqiao/Shimantan dam failure, China, 1975) excluded (Burgherr et al., 2011).
• Previous studies: Hirschberg et al. (1998); Burgherr et al. (2004, 2008).

Photovoltaic (PV)

• Current estimates include only silicon (Si) technologies, weighted by their 2008 market shares, i.e., 86% for c-Si and 5.1% for a-Si/u-Si.
• The analysis covers risks of selected hazardous substances (chlorine, hydrochloric acid, silane and trichlorosilane) relevant in the Si PV life cycle.
• Accident data were collected for the USA (for which a good coverage exists), and for the years 2000 to 2008 to ensure that estimates are representative of currently 

operating technologies.
• Database sources: Emergency Response Notifi cation System, Risk Management Plan, Major Hazard Incident Data Service, Major Accidents Reporting System, Analysis 

Research and Information on Accidents, Occupational Safety and Health Update. 
• Since collected accidents were not only from the PV sector, the actual PV fatality share was estimated, based on the above substance amounts in the PV sector as a 

share of the total USA production, as well as data from the ecoinvent database.
• Cumulated fatalities for the four above substances were then normalized to the unit of energy production using a generic load factor of 10% (Burgherr et al., 2008).
• Assumption that 1 out of 100 accidents is severe.3

• Current estimate for fatality rate: Burgherr et al. (2011).
• Maximum consequences represent an expert judgment due to limited historical experience (Burgherr et al., 2008).
• Previous studies: Hirschberg et al. (2004b); Burgherr et al. (2008); Roth et al. (2009).
• Other studies: Ungers et al. (1982); Fthenakis et al. (2006); Fthenakis and Kim (2010).

Continued next Page  
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Chile, Colombia, Costa Rica, Cuba, Dominica, the Dominican Republic, 
Ecuador, El Salvador, the Falkland Islands, French Guyana, Grenada, 
Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, 
Montserrat, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, 
St. Kitts and Nevis, Saint Lucia, Saint Pierre et Miquelon, St. Vincent and 
the Grenadines, Suriname, Trinidad and Tobago, the Turks and Caicos 
Islands, Uruguay and Venezuela.

Middle East

Bahrain, the Islamic Republic of Iran, Iraq, Israel, Jordan, Kuwait, 
Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, the United 
Arab Emirates and Yemen. It includes the neutral zone between Saudi 
Arabia and Iraq.

Wind Onshore

• Data sources: Windpower Death Database (Gipe, 2010) and Wind Turbine Accident Compilation (Caithness Windfarm Information Forum, 2010).
• Fatal accidents in Germany in the period 1975-2010; 10 accidents; 10 fatalities. 3 car accidents, where driver distraction from wind farm is given as reason, were 

excluded from the analysis.
• Assumption that 1 out of 100 accidents is severe.3 
• Current estimate for fatality rate: Burgherr et al. (2011). 
• Maximum consequences represent an expert judgment due to limited historical experience (Roth et al., 2009).
• Previous study: Hirschberg et al. (2004b).

Wind Offshore

• Data sources: see onshore above.
• Up to now there were 2 fatal accidents during construction in the UK (2009 and 2010) with 2 fatalities, and 2 fatal accidents during research activities in the USA 

(2008) with 2 fatalities. 
• For the current estimate, only UK accidents were used, assuming a generic load factor of 0.43 (Roth et al., 2009) for the currently installed capacity of 1,340 MW 

(Renewable UK, 2010).
• Assumption that 1 out of 100 accidents is severe.3

• Current estimate for fatality rate: Burgherr et al. (2011).
• Maximum consequences: see onshore above.

Biomass: Combined Heat and Power (CHP) Biogas

• ENSAD Database at PSI; severe (≥5 fatalities) accidents.1 Due to limited historical experience, the CHP Biogas fatality rate was approximated using natural gas 
accident data from the local distribution chain stage. 

• OECD: 1970-2008; 24 accidents; 260 fatalities (Burgherr et al., 2011).
• Maximum consequences represent an expert judgment due to limited historical experience (Burgherr et al., 2011).
• Previous studies: Roth et al. (2009).

Enhanced Geothermal System (EGS)

• For the fatality rate calculations, only well drilling accidents were considered. Due to limited historical experience, exploration accidents in the oil chain were used as a 
rough approximation because of similar drilling equipment. 

• ENSAD Database at PSI; severe (≥5 fatalities) accidents.1

• OECD: 1970-2008; oil exploration, 7 accidents; 63 fatalities (Burgherr, et al. 2011).
• For maximum consequences an induced seismic event was considered to be potentially most severe. Due to limited historical experience, the upper fatality boundary 

from the seismic risk assessment of the EGS project in Basel (Switzerland) was taken as an approximation (Dannwolf and Ulmer, 2009).
• Previous studies: Roth et al. (2009).

Notes: 1. Fatality rates are normalized to the unit of energy production in the corresponding country aggregate. Maximum consequences correspond to the most deadly accident that 
occurred in the observation period. 2. Data from SATW for the years 2000 to 2005 were reported in the China Labour News Flash No. 60 (2006-01-06) available at www.china-labour.
org.hk/en/node/19312 (accessed December 2010). SATW data for the years 2006 to 2009 were published by Reuters, available at www.reuters.com/article/idUSPEK206148 (2006), 
uk.reuters.com/article/idUKPEK32921920080112 (2007), uk.reuters.com/article/idUKTOE61D00V20100214 (2008 and 2009), (all accessed December 2010). 3. For example, the rate 
for natural gas in Germany is about 1 out of 10 (Burgherr and Hirschberg, 2005), and for coal in China about 1 out of 3 (Hirschberg et al., 2003b). 

Non-OECD Asia (also sometimes referred to as ‘developing 
Asia’)

Afghanistan, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, China, 
Chinese Taipei, the Cook Islands, East Timor, Fiji, French Polynesia, India, 
Indonesia, Kiribati, the Democratic People’s Republic of Korea, Laos, 
Macau, Malaysia, Maldives, Mongolia, Myanmar, Nepal, New Caledonia, 
Pakistan, Papua New Guinea, the Philippines, Samoa, Singapore, 
Solomon Islands, Sri Lanka, Thailand, Tonga, Vietnam and Vanuatu.

North Africa

Algeria, Egypt, Libyan Arab Jamahiriya, Morocco and Tunisia.
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OECD – Organisation for Economic Cooperation and 
Development

OECD Europe, OECD North America and OECD Pacifi c as listed below. 
Countries that joined the OECD in 2010 (Chile, Estonia, Israel and 
Slovenia) are not yet included in the statistics used in this report.

OECD Europe

Austria, Belgium, the Czech Republic, Denmark, Finland, France, 
Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the 
Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, 
Sweden, Switzerland, Turkey and the United Kingdom.

OECD North America
Canada, Mexico and the United States.

OECD Pacifi c
Australia, Japan, Korea and New Zealand.

OPEC (Organization of Petroleum Exporting Countries)
Algeria, Angola, Ecuador, Islamic Republic of Iran, Iraq, Kuwait, Libya, 
Nigeria, Qatar, Saudi Arabia, United Arab Emirates and Venezuela.

Sub-Saharan Africa
Africa regional grouping excluding the North African regional grouping 
and South Africa. 

A.II.7  General conversion factors for energy

Table A.II.6 provides conversion factors for a variety of energy-related 
units.

Table A.II.6 | Conversion factors for energy units (IEA, 2010b).

To: TJ Gcal Mtoe MBtu GWh

From: multiply by:

TJ 1 238.8 2.388 x 10-5 947.8 0.2778

Gcal 4.1868 x 10-3 1 10-7 3.968 1.163 x 10-3

Mtoe 4.1868 x 104 107 1 3.968 x 107 11,630

MBtu 1.0551 x 10-3 0.252 2.52 x 10-8 1 2.931 x 10-4

GWh 3.6 860 8.6 x 10-5 3,412 1

Notes: MBtu: million British thermal unit; GWh: gigawatt hour; Gcal: gigacalorie; 
TJ: terajoule; Mtoe: megatonne of oil equivalent.
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